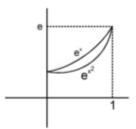
Example # 17 Estimate the value of $\int_{0}^{1} e^{x^2} dx$ by using $\int_{0}^{1} e^{x} dx$.

Solution For $x \in (0, 1)$, $e^{x^2} < e^x$

$$\Rightarrow \qquad 1 \times 1 < \int_0^1 e^{x^2} dx < \int_0^1 e^x dx$$

$$1 < \int_{0}^{1} e^{x^{2}} dx < e - 1$$



Example # 16 Estimate the value of $\int_{-\infty}^{\infty} e^{x^2} dx$ using (i) rectangle, (ii) triangle.

Solution

By using rectangle

Area OAED
$$<\int_{0}^{1} e^{x^{2}} dx < Area OABC$$

$$1 < \int_{0}^{1} e^{x^{2}} dx < 1 \cdot e$$

$$1 < \int_{0}^{1} e^{x^{2}} dx < e$$

(ii) By using triangle

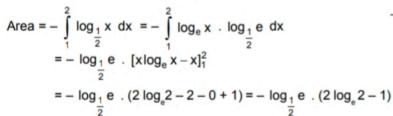
$$1 < \int_{0}^{1} e^{x^{2}} dx < 1 + \frac{1}{2} \cdot 1 \cdot (e - 1)$$
 $1 < \int_{0}^{1} e^{x^{2}} dx < \frac{e + 1}{2}$

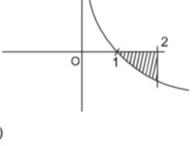
$$1 < \int_{0}^{1} e^{x^{2}} dx < \frac{e+1}{2}$$

Graph of y = f(x)

Example # 4 : Find area bounded by $y = \log_{\frac{1}{2}} x$ and x-axis between x = 1 and x = 2

Solution: A rough graph of $y = log_{\frac{1}{2}} x$ is as follows





Note: If y = f(x) does not change sign in [a, b], then area bounded by y = f(x), x-axis between

ordinates x = a, x = b is $\int_{a}^{b} f(x) dx$

The area cut off from a parabola by any double ordinate is k times the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k? Consider $y^2 = 4ax$, a > 0 and x = c

Solution

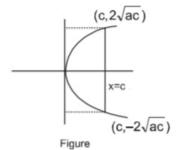
Consider
$$y^2 = 4ax$$
, $a > 0$ and $x =$

Area by double ordinate = $2\int_{0}^{c} 2\sqrt{a} \sqrt{x} dx = \frac{8}{3} \sqrt{a} c^{3/2}$

Area by double ordinate = k (Area of rectangle)

$$\frac{8}{3}\sqrt{a}\,c^{3/2} = k\,4\sqrt{a}\,c^{3/2}$$

$$k = \frac{2}{3}$$



Example # 2 : Find area bounded by the curve $y = \ell n x + tan^{-1} x$ and x-axis between ordinates x = 1 and x = 2. **Solution** $y = \ell n x + tan^{-1}x$

Domain
$$x > 0$$
, $\frac{dy}{dx} = \frac{1}{x} + \frac{1}{1 + x^2} > 0$

y is increasing and x = 1, y = $\frac{\pi}{4}$ \Rightarrow y is positive in [1, 2]

$$\therefore \qquad \text{Required area} = \int_{1}^{2} (\ln x + \tan^{-1} x) \, dx$$

dakshana

DI - 204

Definite Integration & its Application

$$= \left[x \ln x - x + x \tan^{-1} x - \frac{1}{2} \ln (1 + x^2) \right]_1^2$$

$$= 2 \ln 2 - 2 + 2 \tan^{-1} 2 - \frac{1}{2} \ln 5 - 0 + 1 - \tan^{-1} 1 + \frac{1}{2} \ln 2$$

$$= \frac{5}{2} \ln 2 - \frac{1}{2} \ln 5 + 2 \tan^{-1} 2 - \frac{\pi}{4} - 1$$

Note: If a function is known to be positive valued then graph is not necessary.

Example # 1: Find the area enclosed between the curve $y = x^2 + 2$, x-axis, x = 1 and x = 2. **Solution**

(0,2)

Graph of $y = x^2 + 2$

Area = $\int_{1}^{2} (x^2 + 2) dx = \left[\frac{x^3}{3} + 2x \right]_{1}^{2} = \frac{13}{3}$

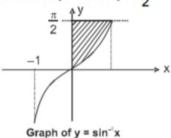
Example #6: Find area bounded between $y = \sin^{-1}x$ and y—axis between y = 0 and $y = \frac{\pi}{2}$.

Solution

$$y = \sin^{-1} x$$
 \Rightarrow $x = \sin y$

Required area $= \int_{0}^{\frac{\pi}{2}} \sin y \, dy$

$$= -\cos y \Big]_{0}^{\frac{\pi}{2}} = -(0-1) = 1$$



Note: The area in above example can also evaluated by integration with respect to x.

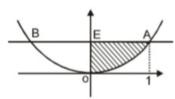
Area = (area of rectangle formed by x = 0, y = 0 , x = 1, y = $\frac{\pi}{2}$) – (area bounded by y = sin⁻¹x, x–axis between x = 0 and x = 1)

$$= \frac{\pi}{2} \times 1 - \int_{0}^{1} \sin^{-1} x \ dx = \frac{\pi}{2} - \left(x \sin^{-1} x + \sqrt{1 - x^{2}} \right)_{0}^{1} = \frac{\pi}{2} - \left(\frac{\pi}{2} + 0 - 0 - 1 \right) = 1$$

Example #7: Find the area bounded by the parabola $x^2 = y$, y-axis and the line y = 1.

Solution Grap

Graph of $y = x^2$



Area OEBO = Area OAEO = $\int_{0}^{1} |x| dy = \int_{0}^{1} \sqrt{y} dy = \frac{2}{3}$

Example # 5: Find the area bounded by $y = x^3$ and x- axis between ordinates x = -1 and x = 1

Solution

Required area =
$$\int_{-1}^{0} -x^{3} dx + \int_{0}^{1} x^{3} dx$$

= $\left[-\frac{x^{4}}{4} \right]_{-1}^{0} + \left[\frac{x^{3}}{4} \right]_{0}^{1}$
= $0 - \left(-\frac{1}{4} \right) + \frac{1}{4} - 0 = \frac{1}{2}$

-1 0 1

Graph of v = v3

Note: Most general formula for area bounded by curve y = f(x) and x- axis between ordinates x = a and x = b is

$$\int_{a}^{b} |f(x)| dx$$

Example # 9 : For any real t, $x = \frac{1}{2}$ (e^t + e^{-t}), $y = \frac{1}{2}$ (e^t - e^{-t}) is point on the hyperbola $x^2 - y^2 = 1$. Show that the area bounded by the hyperbola and the lines joining its centre to the points corresponding to t_1 and $-t_2$ is t_3 . Solution

$$\begin{split} &\text{Area (PQRP)} = 2 \int\limits_{1}^{\frac{e^{t_1} + e^{-t_1}}{2}} y dx = 2 \int\limits_{1}^{\frac{e^{t_1} + e^{-t_1}}{2}} \sqrt{x^2 - 1} \, dx \\ &= 2 \bigg[\frac{x}{2} \sqrt{x^2 - 1} - \frac{1}{2} \ell n (x + \sqrt{x^2 - 1}) \bigg]_{1}^{\frac{e^{t_1} + e^{-t_1}}{2}} = \frac{e^{2t_1} - e^{-2t_1}}{4} - t_1 \\ &\text{Area of } \Delta \text{OPQ} = 2 \times \frac{1}{2} \bigg(\frac{e^{t_1} + e^{-t_1}}{2} \bigg) \bigg(\frac{e^{t_1} - e^{-t_1}}{2} \bigg) = \frac{e^{2t_1} + e^{-2t_1}}{4} - t_1. \\ &\text{Required area} = \text{area } \Delta \text{OPQ} - \text{area (PQRP)} \\ &= t \end{split}$$

(b) If $g(y) \le 0$ for $y \in [c,d]$ then area bounded by curve x = g(y) and y-axis between abscissa y = c and y = d is $-\int\limits_{y=c}^d g(y)dy$

Note: General formula for area bounded by curve x = g(y) and y-axis between abscissa y = c and y = d is $\int_{y=c}^{d} |g(y)| dy$